Investigating the Effects of Microclimate on Physiological Stress and Brain Function with Data Science and Wearables

Author:

Lim Kenneth Y. T.ORCID,Nguyen Duc Minh Anh,Nguyen Thien Minh Tuan,Yuvaraj RajamanickamORCID,Fogarty Jack S.

Abstract

This paper reports a study conducted by students as an independent research project under the mentorship of a research scientist at the National Institute of Education, Singapore. The aim of the study was to explore the relationships between local environmental stressors and physiological responses from the perspective of citizen science. Starting from July 2021, data from EEG headsets were complemented by those obtained from smartwatches (namely heart rate and its variability and body temperature and stress score). Identical units of a wearable device containing environmental sensors (such as ambient temperature, air pressure, infrared radiation, and relative humidity) were designed and worn, respectively, by five adolescents for the same period. More than 100,000 data points of different types—neurological, physiological, and environmental—were eventually collected and were processed through a random forest regression model and deep learning models. The results showed that the most influential microclimatic factors on the biometric indicators were noise and the concentrations of carbon dioxide and dust. Subsequently, more complex inferences were made from the Shapley value interpretation of the regression models. Such findings suggest implications for the design of living conditions with respect to the interaction of the microclimate and human health and comfort.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference49 articles.

1. Climate Change 2014: Synthesis Report;Pachauri,2014

2. The Effects of Climate Change;NASA

3. Urbanization: Our World in Data https://ourworldindata.org/urbanization

4. A multiscale analysis of urbanization effects on ecosystem services supply in an urban megaregion

5. A review on the CFD analysis of Urban microclimate;Toparlar;Renew. Sustain. Energy Rev.,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3