Tribological Analysis of Molybdenum Disulfide (MOS2) Additivated in the Castor and Mineral Oil Used in Diesel Engine

Author:

Hassan Mehmood Ul,Usman MuhammadORCID,Bashir RehmatORCID,Naeem Shah Asad,Ijaz Malik Muhammad AliORCID,Mujtaba M.A.ORCID,Elkhatib Samah ElsayedORCID,Kalam Md AbulORCID

Abstract

The lubrication phenomenon is used to reduce friction and wear between two rubbed surfaces, such as in engine and cutting processes. Different oils such as mineral oil and synthetic lubricant are being used for this purpose. With the passage of time, the demand of energy will get higher and natural resources and mineral lubricants will be diminished. Furthermore, biodegradation of mineral oil is too slow, and it remains on the surface of earth for a long period of time, creating atmospheric pollution. To overcome this problem, bio lubricants are being used to reduce wear and friction due to their high biodegradability. In order to increase the lubrication capacity of castor oil, a 1 wt. % concentration of MoS2 nanoparticles was added to the base oil. Moreover, to stabilize the additives, 2 wt. % gum arabic and 1 wt. % Oleic acid (OA) were also added. Then, multiple tests, such as of physicochemical properties, Fourier transform infrared (FTIR), and atomic absorption spectroscopy (AAS) of synthetic lubricant and conventional lubricant, were carried out before and after the operational running of 100 h on the diesel engine for each lubricant at 75% throttle, 2200 rpm, and 50% of total load. The results show that the behavior of newly prepared MoS2-based synthetic lubricant possessed higher characteristics in some physicochemical properties and was marginally lacking in other properties compared to shell lubricant. The flash point and specific gravity of synthetic lubricant were decreased compared to shell oil, with relative decreases of 0.27% and 1.15%, respectively. Ash and kinematic viscosity of 40 °C had a relative increase of 4.17% and 1.61%, respectively, and at a kinematic viscosity of 100 °C, the pour points and total base number (TBN) were relatively increased at 1.09%, 6.02%, and 1.38%, respectively, with respect to the properties of the shell lubricant. Moreover, this analysis evaluated that the reduction of wear and tear in synthetic lubricant regarding chromium (Cr), copper (Cu), and iron (Fe) was decreased by 21.12%, 3.39%, and 0.96%, respectively, but in the case of aluminum (Al) the wear and tear was marginally increased, at 1.17%, compared to shell lubricant. In the case of calcium (Ca) and zinc (Zn), the concentration was decreased by 3.59% and 17.41%, respectively. The FTIR analysis shows that all the peaks of the synthetic lubricant and shell lubricant were overlapping each other in the first three regions of the mid-IR spectra from 4000 to 1500 cm−1 and had the same functional groups—hydroxyl stretch (O-H), alkanes (C-H), carbonyls (C=O), aromatic amines (C-N), and alkyl halides (C-Br)—which were attached but fluctuating in the fingerprint region. The results show that shell lubricant can be replaced with MoS2-based synthetic lubricant because the latter has superior friction reduction and load-bearing capability and can compete favorably with commercial shell oil in wear protection when additivated with MoS2-based nanoparticles, and hence can be a good alternative for diesel engine oil.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference33 articles.

1. Evaluation of Thermal and Rheological Properties of Lubricating Greases Modified with Recycled LDPE

2. Tribological Properties of Composite Multilayer Coatings;Gebretsadik;Master’s Thesis,2009

3. Leonardo da Vinci׳s studies of friction

4. Utilization of Vegetable Oil as Bio-Lubricant and Additive;Liew Yun Hsien,2015

5. Sustainability of a non-edible vegetable oil based bio-lubricant for automotive applications: A review

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3