Receding-Horizon Prediction of Vehicle Velocity Profile Using Deterministic and Stochastic Deep Neural Network Models

Author:

Topić JakovORCID,Škugor Branimir,Deur Joško

Abstract

The paper firstly proposes a deterministic deep feedforward neural network model aimed at predicting the city bus velocity profile over receding time horizon based on the following inputs: actual vehicle position, actual velocity or short-term history of vehicle velocities, time of day and day of week. A systematic analysis of the influence of different input subsets, history interval length and prediction horizon length is carried out to find an optimal configuration of NN model inputs and hyperparameters. Secondly, a stochastic version of neural network prediction model is proposed, which predicts expectations and standard deviations of velocity patterns over the receding time horizon. The stochastic model prediction accuracy is verified against the recorded test dataset features, as well as by comparing the predicted velocity expectation with the deterministic model prediction and correlating the predicted velocity standard deviation with deterministic model prediction uncertainty metrics. The verification results indicate that: (i) the deterministic model velocity prediction accuracy is characterized by the R2 score greater than 0.8 for the prediction horizon length of 10 s and remains to be solid (greater than 0.6) for the horizon lengths up to 25 s; (ii) the actual vehicle position and the velocity history are the most significant input features, where the optimal value of history interval length lies in the range from 30 to 50 s; (iii) the stochastic model have only slightly lower accuracy of predicting the velocity expectation along the receding horizon when compared to the deterministic model (the root mean square error is higher by 2.2%), and it outputs consistent standard deviation prediction.

Funder

Croatian Science Foundation

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference27 articles.

1. Power-Split HEV Control Strategy Development with Refined Engine Transients

2. Modeling for drivability and drivability improving control of HEV

3. Vehicle Propulsion Systems: Introduction to Modeling and Optimization;Guzzella,2007

4. The development of Model Predictive Control in automotive industry: A survey;Hrovat;Proceedings of the IEEE International Conference on Control Applications,2012

5. Longitudinal Vehicle Dynamics;Rajamani,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3