Seismic Performance of a Sliding Isolation Bridge System with a New Spring Re-Centering Device

Author:

Yin Pengcheng,Wang Jianguo,Pang Yutao

Abstract

Residual displacements between the girder and piers were observed in previous strong earthquakes. These are caused by the limited re-centering capacity of sliding isolation bearings. With this concern, a spring re-centering device is proposed to improve the re-centering capacity of sliding isolation systems. The working mechanism is illustrated, and the force–deformation relationship of this device was investigated in theoretical, experimental, and finite element methods. An extra-dosed multi-pylon cable-stayed bridge was introduced to demonstrate the re-centering effect. The results show that this spring re-centering device could slightly mitigate the seismic forces and significantly mitigate the residual displacement between the girder and piers. After that, the parametric analysis was conducted to investigate the effect of critical parameters of re-centering bearings on seismic performances.

Funder

R & D project of China Railway Siyuan Survey and Design Institute Group Co., Ltd.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3