Slope Deformation Prediction Based on MT-InSAR and Fbprophet for Deep Excavation Section of South–North Water Transfer Project

Author:

Ding Laizhong,Li ChunyiORCID,Wei Lei,Guo Zengzhang,Jia Pengzhen,Wang Wenjie,Gao Yantao

Abstract

In the operation and maintenance of the South–North Water Transfer Project, monitoring and predicting the canal slope deformation quickly and efficiently is one of the urgent problems to be solved. To predict the slope deformation of the deep excavated canal section at the head of the canal. We propose a new idea of adopting the joint prediction of MT-InSAR and Fbprophet. Firstly, MT-InSAR monitoring technology was used to invert channel deformation using 88 Sentinel-1A orbit-raising image data with a time baseline from 2017 to 2019. The time-series deformation of nine monitoring points was also extracted, and it was found that the time-series curves of the cumulative deformation of the channel slope showed fluctuations. The Fbprophet algorithm was then used to train the prediction model in Python to predict the channel slope deformation over the next 365 days. Finally, the prediction results were compared with the MT-InSAR monitoring values to analyze the prediction accuracy and applicability of the Fbprophet algorithm for the slope deformation monitoring of the South–North Water Transfer Project. The results show that: the deformation rate of the slope of the deep excavation section is in the range of 10 mm/a to 25 mm/a, the maximum accumulated deformation is about 60 mm, and the slope of the excavation canal shows a lifting phenomenon; among the nine monitoring points, the minimum and maximum predicted values of deformation using the machine learning prediction model trained in this paper were 56 mm and 73 mm, respectively; comparing the predicted and monitored values, their correlation coefficients were 0.998 at the highest and 0.988 at the lowest, and the minimum and maximum values of RMSE (RootMean Square Error) were 0.72 mm and 2.87 mm, respectively. It shows that the prediction model trained by the Fbprophet algorithm in this paper applies to the prediction of slope deformation in the deep excavation section, and our prediction results can provide a data reference for disaster prevention and the sustainable development of the South–North Water Transfer Project.

Funder

National Natural Science Foundation of China

Key Project of the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3