Comparing Four Machine Learning Algorithms for Land Cover Classification in Gold Mining: A Case Study of Kyaukpahto Gold Mine, Northern Myanmar

Author:

Oo Tin KoORCID,Arunrat Noppol,Sereenonchai Sukanya,Ussawarujikulchai Achara,Chareonwong Uthai,Nutmagul Winai

Abstract

Numerous studies have been undertaken to determine the optimal land use/cover classification algorithm. However, there have not been many studies that have compared and evaluated the performance of maximum likelihood (ML), random forest (RF), support vector machine (SVM), and classification and regression trees (CART) using ASTER imagery, especially in a mining district. Therefore, this study aims to investigate land use/cover (LULC) change over three decades (1990–2020), comparing the performance of the ML, RF, SVM, and CART machine learning algorithms. The Landsat and ASTER data were retrieved using Google Earth Engine (GEE). Traditional ML classification was performed on ArcGIS 10.2 software while RF, SVM, and CART classification were undertaken on GEE. Then, thematic accuracy assessments were conducted for the four algorithms and their performances were compared. The results showed that the largest changes in area occurred in forest cover that decreased from 37.8 to 27.3 km2 during the three decades. The remarkable expansion of gold mining occurred during 2005–2010 with the increases of 1.6%. The mining land rose by 2.9% during the study period whereas agricultural land increased significantly by 10.7% between 1990 and 2020. When comparing the four algorithms, the RF algorithm gives the highest accuracy with an overall accuracy of 95.85% while SVM follows RF with 91.69%. This study proved that RF is the best choice for optimal land use/cover classification, particularly in the mining district.

Funder

Mahidol-Norway Capacity Building Initiative for ASEAN (CBIA) scholarship program

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3