Enhancing the Durability Properties of Sustainable Geopolymer Concrete Using Recycled Coarse Aggregate and Ultrafine Slag at Ambient Curing

Author:

Arora Saloni,Jangra Parveen,Pham Thong M.ORCID,Lim Yee Yan

Abstract

This study aimed at investigating the durability characteristics of the ambient-cured geopolymer concrete (GPC) developed using recycled coarse aggregate (RCA) and ultrafine slag (UFS). Two series of mixes were prepared. Natural aggregates (NAs) were replaced by RCA at different volume levels of 0, 25, 50 and 100% in both series. Meanwhile, UFS was added as a replacement by volume of fly ash at varying levels of 0, 15, and 30% in the first series, while UFS was used in addition to fly ash by percentage weight of fly ash at the levels of 0, 15, and 30% in the second series. The compressive strength, water absorption, chloride ion penetration, and carbonation depth of the developed ambient-cured GPC were studied. In addition, creep and drying shrinkage of the specimens were also examined. It was found that the compressive strength increased with the UFS content, while the opposite trend was observed with increasing RCA%. The highest compressive strength obtained with 100% RCA was 40.21 MPa (at 90 days), when 30% UFS was used in addition to fly ash. The addition of UFS not only helped in improving the strength characteristics but also provided an alternative to heat curing, which is a major drawback of GPC. Furthermore, the negative effects of RCA can also be minimised by adding UFS, which can be used as a compensator to RCA to improve the durability characteristics. The experimental results prove that susceptibility to chemical, water and chloride attacks can be mitigated by incorporation of UFS, and durable GPC can be produced by using RCA and UFS.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3