Applicability of Difference in Oxygen-18 and Deuterium of Water Sources and Isotopic Hydrograph Separation in a Bamboo Catchment during Different Rainfall Types

Author:

You Yang,Qu SiminORCID,Wang Yifan,Yang Qingyi,Shi PengORCID,Jiang Yuxun,Yang Xiaoqiang

Abstract

Typhoon storm and plum rain are two typical rainfall types in the lower regions of the Yangtze River Basin, which frequently cause flood disasters in China. New information in stable water isotopes offers the opportunity to advance understanding of runoff mechanisms and water source dynamics in response to these two typical rainfall types. We intensively monitored two representative rainfall events in a small bamboo forestry watershed in 2016. Results showed that precipitation isotopic variations during the event were generally larger than those of other monitored compartments (including throughfall, surface overland water, groundwater and river water) and also larger for the plum rain than for the typhoon event (δ18O varied in 5.2‰ and 3.7‰, respectively). Importantly, the differences of isotopic temporal variation between rainfall and throughfall showed significant impacts on the two-component hydrograph separation for both rainfall types (e.g., if not considered, the pre-event water fractions were 26.6% and 15.3% higher for the typhoon and plum rain events, respectively). Furthermore, we evaluated the role of soil water on the three-component isotopic hydrograph separation model; results revealed that soil water accounted for 10.9% and 28.3% of the total discharge in typhoon and plum rain events, respectively. This underpins the important role of soil water dynamics during the rainy season in this humid region.

Funder

the National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3