CESA-MCFormer: An Efficient Transformer Network for Hyperspectral Image Classification by Eliminating Redundant Information

Author:

Liu Shukai1ORCID,Yin Changqing1,Zhang Huijuan1

Affiliation:

1. School of Software, Tongji University, Shanghai 201800, China

Abstract

Hyperspectral image (HSI) classification is a highly challenging task, particularly in fields like crop yield prediction and agricultural infrastructure detection. These applications often involve complex image types, such as soil, vegetation, water bodies, and urban structures, encompassing a variety of surface features. In HSI, the strong correlation between adjacent bands leads to redundancy in spectral information, while using image patches as the basic unit of classification causes redundancy in spatial information. To more effectively extract key information from this massive redundancy for classification, we innovatively proposed the CESA-MCFormer model, building upon the transformer architecture with the introduction of the Center Enhanced Spatial Attention (CESA) module and Morphological Convolution (MC). The CESA module combines hard coding and soft coding to provide the model with prior spatial information before the mixing of spatial features, introducing comprehensive spatial information. MC employs a series of learnable pooling operations, not only extracting key details in both spatial and spectral dimensions but also effectively merging this information. By integrating the CESA module and MC, the CESA-MCFormer model employs a “Selection–Extraction” feature processing strategy, enabling it to achieve precise classification with minimal samples, without relying on dimension reduction techniques such as PCA. To thoroughly evaluate our method, we conducted extensive experiments on the IP, UP, and Chikusei datasets, comparing our method with the latest advanced approaches. The experimental results demonstrate that the CESA-MCFormer achieved outstanding performance on all three test datasets, with Kappa coefficients of 96.38%, 98.24%, and 99.53%, respectively.

Funder

基于机器学习的农业农村目标识别与增强技术的研究

Publisher

MDPI AG

Reference53 articles.

1. Revisiting deep hyperspectral feature extraction networks via gradient centralized convolution;Roy;IEEE Trans. Geosci. Remote Sens.,2021

2. Morphological convolutional neural networks for hyperspectral image classification;Roy;IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.,2021

3. Hyperspectral image classification-traditional to deep models: A survey for future prospects;Ahmad;IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.,2022

4. Signoroni, A., Savardi, M., Baronio, A., and Benini, S. (2019). Deep Learning Meets Hyperspectral Image Analysis: A Multidisciplinary Review. J. Imaging, 5.

5. Mapping wheat plant height using a crop surface model from unmanned aerial vehicle imagery and 3D feature points;Li;Comput. Electron. Agric.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3