Nuclei-Guided Network for Breast Cancer Grading in HE-Stained Pathological Images

Author:

Yan RuiORCID,Ren Fei,Li Jintao,Rao Xiaosong,Lv Zhilong,Zheng Chunhou,Zhang FaORCID

Abstract

Breast cancer grading methods based on hematoxylin-eosin (HE) stained pathological images can be summarized into two categories. The first category is to directly extract the pathological image features for breast cancer grading. However, unlike the coarse-grained problem of breast cancer classification, breast cancer grading is a fine-grained classification problem, so general methods cannot achieve satisfactory results. The second category is to apply the three evaluation criteria of the Nottingham Grading System (NGS) separately, and then integrate the results of the three criteria to obtain the final grading result. However, NGS is only a semiquantitative evaluation method, and there may be far more image features related to breast cancer grading. In this paper, we proposed a Nuclei-Guided Network (NGNet) for breast invasive ductal carcinoma (IDC) grading in pathological images. The proposed nuclei-guided attention module plays the role of nucleus attention, so as to learn more nuclei-related feature representations for breast IDC grading. In addition, the proposed nuclei-guided fusion module in the fusion process of different branches can further enable the network to focus on learning nuclei-related features. Overall, under the guidance of nuclei-related features, the entire NGNet can learn more fine-grained features for breast IDC grading. The experimental results show that the performance of the proposed method is better than that of state-of-the-art method. In addition, we released a well-labeled dataset with 3644 pathological images for breast IDC grading. This dataset is currently the largest publicly available breast IDC grading dataset and can serve as a benchmark to facilitate a broader study of breast IDC grading.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference42 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3