Comment on “Pre-Collapse Space Geodetic Observations of Critical Infrastructure: The Morandi Bridge, Genoa, Italy” by Milillo et al. (2019)

Author:

Lanari RiccardoORCID,Reale DiegoORCID,Bonano ManuelaORCID,Verde SimonaORCID,Muhammad Yasir,Fornaro GianfrancoORCID,Casu FrancescoORCID,Manunta MicheleORCID

Abstract

We present in this comment a Multi-Temporal SAR Interferometry (MT-InSAR) analysis showing that the results published by Milillo et al. (2019) in the Remote Sensing Journal, presenting the evidence of space geodetic observations relevant to displacements occurring before the collapse of the Morandi Bridge, happened in Genova (Italy) on the 14 August 2018, are questionable. In particular, we focus on the InSAR results obtained by Milillo et al. (2019) by processing the 3 m × 3 m resolution COSMO-SkyMed (CSK) data collected from ascending and descending orbits on the area of interest. These results, thanks to the high spatial resolution and the short revisit time characterizing this multi-orbit SAR dataset, represent the cornerstone of their analysis. The main findings of their study allow Milillo et al. to conclude that the InSAR processing of this COSMO-SkyMed dataset reveals the increased deformation magnitude over time of points located near the strands of the deck next to the collapsed pier, between 12 March 2017 and August 2018. In this comment, we show the results obtained by the IREA-CNR SAR team after processing the same ascending and descending CSK dataset, but by using two alternative and independent processing techniques: the Small BAseline Subset (SBAS) and the Advanced Tomographic SAR (TomoSAR) approaches, respectively. Our analysis shows that, although both the SBAS and the TomoSAR analyses allow achieving denser coherent pixel maps relevant to the Morandi bridge, nothing of the pre-collapse large displacements reported in Milillo et al. (2019) appears in our results, leading us to deeply disagree with the findings of their InSAR analysis.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3