Pre-Segmented Down-Sampling Accelerates Graph Neural Network-Based 3D Object Detection in Autonomous Driving

Author:

Liang Zhenming1ORCID,Huang Yingping1,Bai Yanbiao1

Affiliation:

1. School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China

Abstract

Graph neural networks (GNNs) have been proven to be an ideal approach to deal with irregular point clouds, but involve massive computations for searching neighboring points in the graph, which limits their application in large-scale LiDAR point cloud processing. Down-sampling is a straightforward and indispensable step in current GNN-based 3D detectors to reduce the computational burden of the model, but the commonly used down-sampling methods cannot distinguish the categories of the LiDAR points, which leads to an inability to effectively improve the computational efficiency of the GNN models without affecting their detection accuracy. In this paper, we propose (1) a LiDAR point cloud pre-segmented down-sampling (PSD) method that can selectively reduce background points while preserving the foreground object points during the process, greatly improving the computational efficiency of the model without affecting its 3D detection accuracy. (2) A lightweight GNN-based 3D detector that can extract point features and detect objects from the raw down-sampled LiDAR point cloud directly without any pre-transformation. We test the proposed model on the KITTI 3D Object Detection Benchmark, and the results demonstrate its effectiveness and efficiency for autonomous driving 3D object detection.

Funder

National Nature Science Foundation of China

Shanghai Nature Science Foundation of Shanghai Science and Technology Commission

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3