Long-Term Tumor-Targeting Effect of E. coli as a Drug Delivery System

Author:

Kim Gun Gyun1,Lee Hongje1,Jeong Dan Bi12,Kim Sang Wook2,So Jae-Seon3ORCID

Affiliation:

1. Department of Nuclear Medicine, Dongnam Institute of Radiological and Medical Sciences, Busan 46033, Republic of Korea

2. Department of Advanced Materials Chemistry, Dongguk University, Gyeongju 38066, Republic of Korea

3. Department of Medical Biotechnology, Dongguk University, Gyeongju 38066, Republic of Korea

Abstract

To overcome the limitations of current nano/micro-scale drug delivery systems, an Escherichia coli (E. coli)-based drug delivery system could be a potential alternative, and an effective tumor-targeting delivery system can be developed by attempting to perform chemical binding to the primary amine group of a cell membrane protein. In addition, positron emission tomography (PET) is a representative non-invasive imaging technology and is actively used in the field of drug delivery along with radioisotopes capable of long-term tracking, such as zirconium-89 (89Zr). The membrane proteins were labeled with 89Zr using chelate (DFO), and not only was the long-term biodistribution in tumors and major organs evaluated in the body, but the labeling stability of 89Zr conjugated to the membrane proteins was also evaluated through continuous tracking. E. coli accumulated at high levels in the tumor within 5 min (initial time) after tail intravenous injection, and when observed after 6 days, 89Zr-DFO on the surface of E. coli was found to be stable for a long period of time in the body. In this study, we demonstrated the long-term biodistribution and tumor-targeting effect of an E. coli-based drug delivery system and verified the in vivo stability of radioisotopes labeled on the surface of E. coli.

Funder

Dongnam Institute of Radiological & Medical Sciences

National Research Foundation of Korea

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3