Synthesis, In Vitro Biological Evaluation and Molecular Modeling of Benzimidazole-Based Pyrrole/Piperidine Hybrids Derivatives as Potential Anti-Alzheimer Agents

Author:

Tariq Sundas1,Rahim Fazal1,Ullah Hayat2ORCID,Sarfraz Maliha3,Hussain Rafaqat1,Khan Shoaib4ORCID,Khan Misbah Ullah5,Rehman Wajid1,Hussain Amjad2ORCID,Bhat Mashooq Ahmad6ORCID,Farooqi Muhammad Kamran7,Shah Syed Adnan Ali89,Iqbal Naveed10

Affiliation:

1. Department of Chemistry, Hazara University, Mansehra 21120, Pakistan

2. Institute of Chemistry, University of Okara, Okara 56130, Pakistan

3. Department of Zoology, Wildlife and Fisheries, University of Agriculture Faisalabad, Sub-Campus Toba Tek Singh, Toba Tek Singh 36080, Pakistan

4. Department of Chemistry, Abbottabad University of Science and Technology, Abbottabad 22500, Pakistan

5. Center for Nanosciences, University of Okara, Okara 56130, Pakistan

6. Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia

7. Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan District, Wuhan 430074, China

8. Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam 42300, Selangor, Malaysia

9. Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam 42300, Selangor, Malaysia

10. Department of Chemistry, University of Poonch, Rawalakot 12350, Pakistan

Abstract

Benzimidazole-based pyrrole/piperidine analogs (1–26) were synthesized and then screened for their acetylcholinesterase and butyrylcholinesterase activities. All the analogs showed good to moderate cholinesterase activities. Synthesized compounds (1–13) were screened in cholinesterase enzyme inhibition assays and showed AChE activities in the range of IC50 = 19.44 ± 0.60 µM to 36.05 ± 0.4 µM against allanzanthane (IC50 = 16.11 ± 0.33 µM) and galantamine (IC50 = 19.34 ± 0.62 µM) and varied BuChE inhibitory activities, with IC50 values in the range of 21.57 ± 0.61 µM to 39.55 ± 0.03 µM as compared with standard allanzanthane (IC50 = 18.14 ± 0.05 µM) and galantamine (IC50 = 21.45 ± 0.21 µM). Similarly, synthesized compounds (14–26) were also subjected to tests to determine their in vitro AChE inhibitory activities, and the results obtained corroborated that all the compounds showed varied activities in the range of IC50 = 22.07 ± 0.13 to 42.01 ± 0.02 µM as compared to allanzanthane (IC50 = 20.01 ± 0.12 µM) and galantamine (IC50 = 18.05 ± 0.31 µM) and varied BuChE inhibitory activities, with IC50 values in the range of 26.32 ± 0.13 to 47.03 ± 0.15 µM as compared to standard allanzanthane (IC50 = 18.14 ± 0.05 µM) and galantamine (IC50 = 21.45 ± 0.21 µM). Binding interactions of the most potent analogs were confirmed through molecular docking studies. The active analogs 2, 4, 10 and 13 established numerous interactions with the active sites of targeted enzymes, with docking scores of −10.50, −9.3, −7.73 and −7.8 for AChE and −8.97, −8.2, −8.20 and −7.6 for BuChE, respectively.

Funder

King Saud University, Riyadh, Saudi Arabia

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3