Block-Adaptive Rényi Entropy-Based Denoising for Non-Stationary Signals

Author:

Saulig NicolettaORCID,Lerga JonatanORCID,Miličić SinišaORCID,Tomasović ŽeljkaORCID

Abstract

This paper approaches the problem of signal denoising in time-variable noise conditions. Non-stationary noise results in variable degradation of the signal’s useful information content over time. In order to maximize the correct recovery of the useful part of the signal, this paper proposes a denoising method that uses a criterion based on amplitude segmentation and local Rényi entropy estimation which are limited over short time blocks of the signal spectrogram. Local estimation of the signal features reduces the denoising problem to the stationary noise case. Results, presented for synthetic and real data, show consistently better performance gained by the proposed adaptive method compared to denoising driven by global criteria.

Funder

EU Horizon

Croatian Science Foundation

IRI2

University of Rijeka

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference24 articles.

1. Time Frequency Signal Analysis and Processing: A Comprehensive Reference;Boashash,2016

2. Separating More Sources Than Sensors Using Time-Frequency Distributions

3. TFD Thresholding in Estimating the Number of EEG Components and the Dominant IF Using the Short-Term Rényi Entropy;Lerga;Proceedings of the 10th International Symposium on Image and Signal Processing and Analysis,2017

4. An architecture for the realization of a system for time-frequency signal analysis

5. Instantaneous counting of components in nonstationary signals;Saulig;Proceedings of the European Signal Processing Conference (EUSIPCO),2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3