AI-Inspired Non-Terrestrial Networks for IIoT: Review on Enabling Technologies and Applications

Author:

Michailidis Emmanouel T.ORCID,Potirakis Stelios M.ORCID,Kanatas Athanasios G.ORCID

Abstract

During the last few years, various Industrial Internet of Things (IIoT) applications have emerged with numerous network elements interconnected using wired and wireless communication technologies and equipped with strategically placed sensors and actuators. This paper justifies why non-terrestrial networks (NTNs) will bring the IIoT vision closer to reality by providing improved data acquisition and massive connectivity to sensor fields in large and remote areas. NTNs are engineered to utilize satellites, airships, and aircrafts, which can be employed to extend the radio coverage and provide remote monitoring and sensing services. Additionally, this paper describes indicative delay-tolerant massive IIoT and delay-sensitive mission-critical IIoT applications spanning a large number of vertical markets with diverse and stringent requirements. As the heterogeneous nature of NTNs and the complex and dynamic communications scenarios lead to uncertainty and a high degree of variability, conventional wireless communication technologies cannot sufficiently support ultra-reliable and low-latency communications (URLLC) and offer ubiquitous and uninterrupted interconnectivity. In this regard, this paper sheds light on the potential role of artificial intelligence (AI) techniques, including machine learning (ML) and deep learning (DL), in the provision of challenging NTN-based IIoT services and provides a thorough review of the relevant research works. By adding intelligence and facilitating the decision-making and prediction procedures, the NTNs can effectively adapt to their surrounding environment, thus enhancing the performance of various metrics with significantly lower complexity compared to typical optimization methods.

Publisher

MDPI AG

Subject

General Engineering

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3