New Topsoil Sampler for the Assessment and Monitoring of Forest Soil Contamination

Author:

Kabala CezaryORCID,Galka Bernard,Yurkouski Siarhei

Abstract

The forest litter and underlying mineral topsoil are typically sampled and analyzed separately although they are in a dynamic balance, which ensures macro- and microelement cycling in the forest ecosystem, including the flux and accumulation of xenobiotics in the contaminated sites. Although the national legal regulations specify single limits of element concentration for the entire “topsoil” layer, irrespectively of the kind of materials resting at the earth surface down to the specified depth, the direct analysis of bicomponent forest topsoil (litter + mineral topsoil) was problematic because of the lack of a suitable sampler. The paper presents a comparative analysis of Cu, Pb, and Zn concentrations in the forest topsoil layers (0–25 cm), sampled using a new construction sampler invented for a joint collection of the litter layer and underlying mineral layer (to the specified depth). Litter samples (using a steel frame), mineral topsoil samples (0–25 cm, using gouge auger after litter removal), and mixed topsoil samples (0–25 cm, including litter) were collected in 16 replicates from four variably contaminated plots (copper mining and smelting area) afforested with poplar or pine. Pseudo-total concentration of Cu, Pb, and Zn was analyzed after sample digestion in aqua regia. The concentration of elements in the samples consisting of jointly collected litter and mineral layer was noticeably higher than in the samples consisting of the mineral topsoil only, which confirmed the effective inclusion of the litter. The concentrations of trace elements measured in the samples of jointly collected litter and mineral topsoil did not differ (NIR Fisher test at p < 0.05) from the concentrations calculated using the data for litter and mineral soil separately collected and analyzed, which confirmed the usefulness of the new sampler for reliable collection of the forest topsoil samples without skipping any material which may influence the results of soil contamination assessment and risk assessment.

Publisher

MDPI AG

Subject

Forestry

Reference62 articles.

1. Forest soil: Characterization, sampling, physical, and chemical analyses;Cools;Dev. Environ. Sci.,2013

2. Comparison of sampling with a spade and gouge auger for topsoil monitoring at the continental scale;Fernández-Ugalde;Eur. J. Soil Sci.,2020

3. Problems of trophic status diagnosis in the forest habitats on former arable alluvial soils;Łabaz;Sylwan,2016

4. Soil quality monitoring for assessing sustainable forest management;Burger,1999

5. Influence of stands with diversed share of Norway spruce in species structure on soils of various forest habitats in the Stołowe Mountains;Gałka;Sylwan,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3