Development and Testing of a UAV Laser Scanner and Multispectral Camera System for Eco-Geomorphic Applications

Author:

Tomsett ChristopherORCID,Leyland JulianORCID

Abstract

While Uncrewed Aerial Vehicle (UAV) systems and camera sensors are routinely deployed in conjunction with Structure from Motion (SfM) techniques to derive 3D models of fluvial systems, in the presence of vegetation these techniques are subject to large errors. This is because of the high structural complexity of vegetation and inability of processing techniques to identify bare earth points in vegetated areas. Furthermore, for eco-geomorphic applications where characterization of the vegetation is an important aim when collecting fluvial survey data, the issues are compounded, and an alternative survey method is required. Laser Scanning techniques have been shown to be a suitable technique for discretizing both bare earth and vegetation, owing to the high spatial density of collected data and the ability of some systems to deliver dual (e.g., first and last) returns. Herein we detail the development and testing of a UAV mounted LiDAR and Multispectral camera system and processing workflow, with application to a specific river field location and reference to eco-hydraulic research generally. We show that the system and data processing workflow has the ability to detect bare earth, vegetation structure and NDVI type outputs which are superior to SfM outputs alone, and which are shown to be more accurate and repeatable, with a level of detection of under 0.1 m. These characteristics of the developed sensor package and workflows offer great potential for future eco-geomorphic research.

Funder

Natural Environment Research Council

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3