ICDW-YOLO: An Efficient Timber Construction Crack Detection Algorithm

Author:

Zhou Jieyang1ORCID,Ning Jing2ORCID,Xiang Zhiyang1ORCID,Yin Pengfei1ORCID

Affiliation:

1. College of Computer Science and Engineering, Jishou University, Jishou 416000, China

2. School of Communication and Electronic Engineering, Jishou University, Jishou 416000, China

Abstract

A robust wood material crack detection algorithm, sensitive to small targets, is indispensable for production and building protection. However, the precise identification and localization of cracks in wooden materials present challenges owing to significant scale variations among cracks and the irregular quality of existing data. In response, we propose a crack detection algorithm tailored to wooden materials, leveraging advancements in the YOLOv8 model, named ICDW-YOLO (improved crack detection for wooden material-YOLO). The ICDW-YOLO model introduces novel designs for the neck network and layer structure, along with an anchor algorithm, which features a dual-layer attention mechanism and dynamic gradient gain characteristics to optimize and enhance the original model. Initially, a new layer structure was crafted using GSConv and GS bottleneck, improving the model’s recognition accuracy by maximizing the preservation of hidden channel connections. Subsequently, enhancements to the network are achieved through the gather–distribute mechanism, aimed at augmenting the fusion capability of multi-scale features and introducing a higher-resolution input layer to enhance small target recognition. Empirical results obtained from a customized wooden material crack detection dataset demonstrate the efficacy of the proposed ICDW-YOLO algorithm in effectively detecting targets. Without significant augmentation in model complexity, the mAP50–95 metric attains 79.018%, marking a 1.869% improvement over YOLOv8. Further validation of our algorithm’s effectiveness is conducted through experiments on fire and smoke detection datasets, aerial remote sensing image datasets, and the coco128 dataset. The results showcase that ICDW-YOLO achieves a mAP50 of 69.226% and a mAP50–95 of 44.210%, indicating robust generalization and competitiveness vis-à-vis state-of-the-art detectors.

Funder

Jishou University

Hunan Student‘s innovation and entrepreneurship training program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3