Joint Optimization of Age of Information and Energy Consumption in NR-V2X System Based on Deep Reinforcement Learning

Author:

Song Shulin12,Zhang Zheng12,Wu Qiong12ORCID,Fan Pingyi3ORCID,Fan Qiang4ORCID

Affiliation:

1. School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, China

2. Zhuhai Fudan Innovation Institute, Zhuhai 519031, China

3. Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China

4. Qualcomm, San Jose, CA 95110, USA

Abstract

As autonomous driving may be the most important application scenario of the next generation, the development of wireless access technologies enabling reliable and low-latency vehicle communication becomes crucial. To address this, 3GPP has developed Vehicle-to-Everything (V2X) specifications based on 5G New Radio (NR) technology, where Mode 2 Side-Link (SL) communication resembles Mode 4 in LTE-V2X, allowing direct communication between vehicles. This supplements SL communication in LTE-V2X and represents the latest advancements in cellular V2X (C-V2X) with the improved performance of NR-V2X. However, in NR-V2X Mode 2, resource collisions still occur and thus degrade the age of information (AOI). Therefore, an interference cancellation method is employed to mitigate this impact by combining NR-V2X with Non-Orthogonal multiple access (NOMA) technology. In NR-V2X, when vehicles select smaller resource reservation intervals (RRIs), higher-frequency transmissions use more energy to reduce AoI. Hence, it is important to jointly considerAoI and communication energy consumption based on NR-V2X communication. Then, we formulate such an optimization problem and employ the Deep Reinforcement Learning (DRL) algorithm to compute the optimal transmission RRI and transmission power for each transmitting vehicle to reduce the energy consumption of each transmitting vehicle and the AoI of each receiving vehicle. Extensive simulations demonstrate the performance of our proposed algorithm.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

111 project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3