Author:
Zhang Baogang,Li Yiwei,Liu Ming,Liu Yuchuan,Luo Tong,Liu Qingyuan,Feng Lie,Jiao Weili
Abstract
With the continuously growing city size and the increasingly complex and changeable light environment in the city, remote sensing and ground-measured technologies have certain limitations in the research of urban night light environment. The ground-measured data are accurate but low in efficiency and small in scale, while the night-light remote sensing data have the characteristics of high accuracy and large coverage. In this paper, high-resolution night-light remote sensing data and high-accuracy ground-measured data were used to establish an urban ground light environment inversion method with the advantages of remote sensing and ground-measured data in a “space-ground collaboration” approach. A ground database is constructed in GIS based on 26,000 ground measurement data of 4 blocks, 3 spatial perspectives, and 3 light environment parameters. Based on the comparison of the numerical relationship between the measured data of each light environment parameter and each window, the horizontal window is selected as the target window for the ground night light environment inversion research. The urban night light environment inversion method based on the correlation between telemetry and ground- measurement is used to construct and compare the correlation between Luojia night light radiance data and 9 sets of measured data of different ground windows and different light environment parameters. The illuminance measured data of horizontal window and Luojia radiance data, both of which are highly correlated, are selected for regression analysis. The mathematical inversion model of ground illuminance is constructed based on the cubic polynomial model with the lowest RMSE among the six regression models. The inversion result not only has photometric calibration, but also is superior to the original data in terms of population data relevance and accuracy.
Funder
The National Key Research and Development Programs of China
The National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献