Introducing Two Fixed Platforms in the Yellow Sea and East China Sea Supporting Long-Term Satellite Ocean Color Validation: Preliminary Data and Results

Author:

Song Qingjun,Chen ShuguoORCID,Hu LianboORCID,Wang Xi,Shi Xinhao,Li Xueyin,Deng Linke,Ma Chaofei

Abstract

Following the Aerosol Robotic Network-Ocean Color (AERONET-OC) network scheme and instrument deployment protocols, two fixed platforms (Muping and Dong’ou) in the Yellow Sea and East China Sea were implemented with the support of the China National Satellite Ocean Application Service. Optical radiometry instruments were established at the two sites to autonomously determine remote sensing reflectance (Rrs) and aerosol optical depth (AOD). Details about location selection, platform design, instrument deployment, and the associated data processing procedure are reported in this study. Rrs and AOD measured by independent instruments at the Muping site were compared and results showed that they were consistent, with a median relative percentage difference (MRPD) < 0.6% for AOD and <10% for Rrs. The spectral feature and temporal pattern of Rrs and AOD at the two sites were examined and compared with data from 14 AERONET-OC sites. Rrs and AOD data measured at the two sites were used to evaluate ocean color operational products of MODIS/Aqua (MODISA), OLCI/Sentinel-3A (OLCI-3A), and OLCI/Sentinel-3B (OLCI-3B). Comparison showed that the three satellite sensor-derived Rrs agreed well with in situ measurements, with an MRPD < 25% for MODISA, <30% for OLCI-3A, and <40% for OLCI-3B, respectively. Large uncertainties were observed in the blue bands for the three satellite sensors, particularly for OLCI-3B at 400 nm. AOD at 865 nm derived from the three satellite sensors also agreed well with in situ measurements, with an MRPD of 28.1% for MODISA, 30.6% for OLCI-3A, and 39.9% for OLCI-3B. Two commonly used atmospheric correction (AC) processors, the ACOLITE and SeaDAS, were also evaluated using in situ measurements at two sites and 20 m-resolution MSI/Sentinel-2A data. Close agreements were achieved for both AC processors, while the SeaDAS performed slightly better than ACOLITE. The optimal band selection in the AC models embedded in two AC processors was a combination of one near-infrared and one short-wave infrared band such as 865 and 1609 nm, shedding light on MSI data applications in the aquatic environment.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3