Long-Term and Bimonthly Estimation of Lake Water Extent Using Google Earth Engine and Landsat Data

Author:

Zhang TaoORCID,Wang Hongxing,Hu ShanshanORCID,You Shucheng,Yang XiaomeiORCID

Abstract

Lakes are one of the most important parts of the terrestrial hydrosphere. The long-term series of lake area dynamic data with high spatial-temporal resolution is of great significance to the study of global change of the water environment. Satellite observations (such as Landsat) have provided images since the 1970s, but there were challenges for the construction of long-term sequences of lake area on a monthly temporal scale. We proposed a temporal-spatial interpolation and rule-based (TSIRB) approach on the Google Earth Engine, which aims to achieve automatic water extraction and bimonthly sequence construction of lake area. There are three main steps of this method which include bimonthly image sequence construction, automatic water extraction, and anomaly rectification. We applied the TSIRB method to five typical lakes (covering salt lakes, river lagoons, and plateau alpine lakes), and constructed the bimonthly surface water dataset (BSWD) from 1987 to 2020. The accuracy assessment that was based on a confusion matrix and random sampling showed that the average overall accuracy (OA) of water extraction was 96.6%, and the average Kappa was 0.90. The BSWD sequence was compared with the lake water level observation data, and the results show that the BSWD data is closely correlated with the water level observation sequence, with correlation coefficient greater than 0.87. The BSWD improves the hollows in the global surface water (GSW) monthly data and has advantages in the temporal continuity of surface water data. The BSWD can provide a 30-m-scale and bimonthly series of surface water for more than 30 years, which shows good value for the long-term dynamic monitoring of lakes, especially in areas that are lacking in situ surveying data.

Funder

National Key Research and Development Program of China

Ministry of Natural Resources of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3