Landslide Deformation Extraction from Terrestrial Laser Scanning Data with Weighted Least Squares Regularization Iteration Solution

Author:

Zhao Lidu,Ma Xiaping,Xiang Zhongfu,Zhang ShuangchengORCID,Hu Chuan,Zhou Yin,Chen GuichengORCID

Abstract

The extraction of landslide deformation using terrestrial laser scanning (TLS) has many important applications. The landslide deformation can be extracted based on a digital terrain model (DTM). However, such methods usually suffer from the ill-posed problem of a multiplicative error model as illustrated in previous studies. Moreover, the edge drift of commonly used spherical targets for point cloud registration (PCR) is ignored in the existing method, which will result in the unstable precision of the PCR. In response to these problems, we propose a method for extracting landslide deformations from TLS data. To archive the PCR of different period point clouds, a new triangular pyramid target is designed to eliminate the edge drift. If a fixed target is inconvenient, we also propose a PCR method based on total station orientation. Then, the use of the Tikhonov regularization method to derive the weighted least squares regularization solution is presented. Finally, the landslide deformation is extracted by DTM deference. The experiments are conducted on two datasets with more than 1.5 billion points. The first dataset takes Lashagou NO. 3 landslide in Gansu Province, China, as the research object; the point cloud data were collected on 26 February 2021 and 3 May 2021. The registration accuracy was 0.003 m based on the permanent triangular pyramid target and 0.005 m based on the total station orientation. The landslide deforms within 3 cm due to the ablation of the frozen soil. The second dataset is TLS data from the Lihua landslide in Chongqing, China, collected on 20 April 2021 and 1 May 2021. The overall deformation of the Lihua landslide is small, with a maximum value of 0.011 m. The result shows that the proposed method achieves a better performance than previous sphere-based registration and that the weighted least square regularization iterative solution can effectively reduce the ill-condition of the model.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3