Noise Analysis and Combination of Hydrology Loading-Induced Displacements

Author:

Xu ChangORCID,Yao Xin,He XiaoxingORCID

Abstract

Large uncertainties exist in the available hydrology loading prediction models, and currently no consensus is reached on which loading model is superior or appears to represent nature in a more satisfactory way. This study discusses the noise characterization and combination of the vertical loadings predicted by different hydrology reanalysis (e.g., MERRA, GLDAS/Noah, GEOS-FPIT, and ERA interim). We focused on the hydrology loading predictions in the time span from 2011 to 2014 for the 70 Global Positioning System (GPS) sites, which are located close to the great rivers, lakes, and reservoirs. The maximum likelihood estimate with Akaike information criteria (AIC) showed that the auto-regressive (AR) model with an order from 2 to 5 is a good description of the temporal correlation that exists in the hydrology loading predictions. Moreover, significant discrepancy exists in the root mean square (RMS) of different hydrology loading predictions, and none of them have the lowest noise level for the all-time domain. Principal component analysis (PCA) was therefore used to create a combined loading-induced time series. Statistical indices (e.g., mean overlapping Hadamard variance, Nash-Sutcliffe efficiency, and variance reduction) showed that our proposed algorithm had an overall good performance and seemed to be potentially feasible for performing corrections on geodetic GPS heights.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3