Abstract
This article introduces exponentiated transmuted-inverted beta (ET-IB) distribution, supported by a continuous positive real line, as a synthetic aperture radar (SAR) imagery descriptor. It is an extension of the inverted beta distribution, an important texture model for SAR imagery. The considered distribution extension approach increases the flexibility of the baseline distribution, and is a new probabilistic model useful in SAR image applications. Besides introducing the new model, the maximum likelihood method is discussed for parameter estimation. Numerical experiments are performed to validate the use of the ET-IB distribution as a SAR amplitude image descriptor. Finally, three measured SAR images referring to forest, ocean, and urban regions are considered, and the performance of the proposed distribution is compared to distributions usually considered in this field. The proposed distribution outperforms the competitor models for modeling SAR images in terms of some selected goodness-of-fit measures. The results show that the ET-IB distribution is suitable as a SAR descriptor and can be used to develop image-processing tools in remote sensing applications.
Funder
São Paulo Research Foundation
Subject
General Earth and Planetary Sciences
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献