Encoding Geospatial Vector Data for Deep Learning: LULC as a Use Case

Author:

Mc Cutchan MarvinORCID,Giannopoulos IoannisORCID

Abstract

Geospatial vector data with semantic annotations are a promising but complex data source for spatial prediction tasks such as land use and land cover (LULC) classification. These data describe the geometries and the types (i.e., semantics) of geo-objects, such as a Shop or an Amenity. Unlike raster data, which are commonly used for such prediction tasks, geospatial vector data are irregular and heterogenous, making it challenging for deep neural networks to learn based on them. This work tackles this problem by introducing novel encodings which quantify the geospatial vector data allowing deep neural networks to learn based on them, and to spatially predict. These encodings were evaluated in this work based on a specific use case, namely LULC classification. We therefore classified LULC based on the different encodings as input and an attention-based deep neural network (called Perceiver). Based on the accuracy assessments, the potential of these encodings is compared. Furthermore, the influence of the object semantics on the classification performance is analyzed. This is performed by pruning the ontology, describing the semantics and repeating the LULC classification. The results of this work suggest that the encoding of the geography and the semantic granularity of geospatial vector data influences the classification performance overall and on a LULC class level. Nevertheless, the proposed encodings are not restricted to LULC classification but can be applied to other spatial prediction tasks too. In general, this work highlights that geospatial vector data with semantic annotations is a rich data source unlocking new potential for spatial predictions. However, we also show that this potential depends on how much is known about the semantics, and how the geography is presented to the deep neural network.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference40 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3