Swin-Transformer-Enabled YOLOv5 with Attention Mechanism for Small Object Detection on Satellite Images

Author:

Gong Hang,Mu TingkuiORCID,Li Qiuxia,Dai Haishan,Li ChunlaiORCID,He Zhiping,Wang Wenjing,Han Feng,Tuniyazi Abudusalamu,Li Haoyang,Lang Xuechan,Li Zhiyuan,Wang Bin

Abstract

Object detection has made tremendous progress in natural images over the last decade. However, the results are hardly satisfactory when the natural image object detection algorithm is directly applied to satellite images. This is due to the intrinsic differences in the scale and orientation of objects generated by the bird’s-eye perspective of satellite photographs. Moreover, the background of satellite images is complex and the object area is small; as a result, small objects tend to be missing due to the challenge of feature extraction. Dense objects overlap and occlusion also affects the detection performance. Although the self-attention mechanism was introduced to detect small objects, the computational complexity increased with the image’s resolution. We modified the general one-stage detector YOLOv5 to adapt the satellite images to resolve the above problems. First, new feature fusion layers and a prediction head are added from the shallow layer for small object detection for the first time because it can maximally preserve the feature information. Second, the original convolutional prediction heads are replaced with Swin Transformer Prediction Heads (SPHs) for the first time. SPH represents an advanced self-attention mechanism whose shifted window design can reduce the computational complexity to linearity. Finally, Normalization-based Attention Modules (NAMs) are integrated into YOLOv5 to improve attention performance in a normalized way. The improved YOLOv5 is termed SPH-YOLOv5. It is evaluated on the NWPU-VHR10 dataset and DOTA dataset, which are widely used for satellite image object detection evaluations. Compared with the basal YOLOv5, SPH-YOLOv5 improves the mean Average Precision (mAP) by 0.071 on the DOTA dataset.

Funder

the Shaanxi Province Key Research and Development Program

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3