Developing an Enhanced Ecological Evaluation Index (EEEI) Based on Remotely Sensed Data and Assessing Spatiotemporal Ecological Quality in Guangdong–Hong Kong–Macau Greater Bay Area, China

Author:

Feng ShanshanORCID,Fan FengleiORCID

Abstract

Ecological changes affected by increasing human activities have highlighted the importance of ecological quality assessments. An appropriate and efficient selection of ecological parameters is fundamental for ecological quality assessments. On the basis of remote sensing data and methods, this study developed an enhanced ecological evaluation index (EEEI) with five integrated ecological parameters by containing pixel and sub-pixel information: normalized difference vegetation index, impervious surface coverage, soil coverage, land surface temperature, and wetness component of tasseled cap transformation. Significantly, the EEEI simultaneously considered the five aspects of land surface ecological conditions (i.e., greenness, human activities, dryness, heat, and moisture), which provided an effective guide for the systematic selection of ecological parameters. The EEEI has a clear theoretical framework, and all the parameters can be obtained quickly on the basis of the remote sensing datasets and methods, which is suitable for the promotion and application of ecological quality assessments to various areas and scales. Furthermore, the EEEI was applied to assess and detect the ecological quality of the Guangdong–Hong Kong–Macau Greater Bay Area (GBA) of China. Assessment results indicated that the ecological quality of the GBA is currently facing great challenges with a degradation trend from 2000 to 2020, which emphasizes the significance and urgency for eco-environmental protection of the GBA. This provided evidence that the EEEI can be used as an effective index for scientific, objective, quantitative, and comprehensive ecological quality assessment, which can also aid regional environmental management and ecological protection.

Funder

National Natural Science Foundation of China

Guangdong Basic and Applied Basic Research Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3