Anti-Clogging Performance Optimization for Shunt-Hedging Drip Irrigation Emitters Based on Water–Sand Motion Characteristics

Author:

Qin Cheng,Zhang Jinzhu,Wang ZhenhuaORCID,Lyu Desheng,Liu Ningning,Xing ShaoboORCID,Wang Fei

Abstract

To improve the irrigation quality and anti-clogging performance of the emitter, it is necessary to design and optimize its flow channel structure. The shunt-hedging drip irrigation emitter (SHDIE) flow channel is a new type of flow channel. Using computational fluid dynamics, by setting different conditions (such as particle size and injection position), the motion trajectory of sand particles and flow field distribution characteristics of the shunt-hedging flow channel were simulated. According to the simulation results, a new anti-clogging structural optimization scheme was proposed, and physical experiments verified its feasibility. The results showed that the flow index of the original flow channel (SHDIE1) and optimized flow channel (SHDIE2) were 0.479 and 0.486, respectively, which mainly relied on the shunting and hedging of water flow to energy dissipation. For sand particles with diameters of 0.05, 0.10, and 0.15 mm, the average values of the velocity amplitude ratio, η, were 0.9998, 0.9994, and 0.9991, respectively; the average values of the velocity phase difference, β, were −0.143°, −0.320°, and −0.409°, respectively. A larger sand particle diameter led to worse followability and a higher risk of blocking the channel. When the sand particles collided with the sensitive region of the flow channel, their movement direction would suddenly change, entering the vortex area. After colliding with the sensitive region of edge A, the maximum probability of sand particles entering the vortex area was increased to 87.5%, and then they stayed in the vortex area under the effect of the sensitive regions of edges B and C. After the sensitive regions were removed, the motion trajectories of sand particles became regular and smooth. The optimized flow channel’s (SHDIE2) anti-clogging performance was greatly improved by 60%, with a 1.46% loss of hydraulic performance. This study can provide theoretical support for designing the high anti-clogging emitter.

Funder

South Xinjiang Key Industry Innovation and Development Support Plan Project of XPCC

Major Science and Technology Projects of XPCC

National Natural Science Foundation of China

National Key Research and Development Projects

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3