Vision and Vibration Data Fusion-Based Structural Dynamic Displacement Measurement with Test Validation

Author:

Xiu Cheng1ORCID,Weng Yufeng1,Shi Weixing1

Affiliation:

1. Department of Disaster Mitigation for Structures, College of Civil Engineering, Tongji University, Shanghai 200092, China

Abstract

The dynamic measurement and identification of structural deformation are essential for structural health monitoring. Traditional contact-type displacement monitoring inevitably requires the arrangement of measurement points on physical structures and the setting of stable reference systems, which limits the application of dynamic displacement measurement of structures in practice. Computer vision-based structural displacement monitoring has the characteristics of non-contact measurement, simple installation, and relatively low cost. However, the existing displacement identification methods are still influenced by lighting conditions, image resolution, and shooting-rate, which limits engineering applications. This paper presents a data fusion method for contact acceleration monitoring and non-contact displacement recognition, utilizing the high dynamic sampling rate of traditional contact acceleration sensors. It establishes and validates an accurate estimation method for dynamic deformation states. The structural displacement is obtained by combining an improved KLT algorithm and asynchronous multi-rate Kalman filtering. The results show that the presented method can help improve the displacement sampling rate and collect high-frequency vibration information compared with only the vision measurement technique. The normalized root mean square error is less than 2% for the proposed method.

Funder

National Key Research and Development Program of China

Shanghai Pujiang Program

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancement of Track Damage Identification by Data Fusion of Vibration-Based Image Representation;Journal of Nondestructive Evaluation;2023-12-19

2. Forward Vision Measurement System for Automotive Drivers Based on Laser and Machine Vision Technology;2023 International Conference on Ambient Intelligence, Knowledge Informatics and Industrial Electronics (AIKIIE);2023-11-02

3. Modeling and Machine Learning of Vibration Amplitude and Surface Roughness after Waterjet Cutting;Materials;2023-09-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3