Saliency Map and Deep Learning in Binary Classification of Brain Tumours

Author:

Chmiel Wojciech1ORCID,Kwiecień Joanna1ORCID,Motyka Kacper1

Affiliation:

1. Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, Al. Mickiewicza 30, AGH University of Science and Technology, 30-059 Krakow, Poland

Abstract

The paper was devoted to the application of saliency analysis methods in the performance analysis of deep neural networks used for the binary classification of brain tumours. We have presented the basic issues related to deep learning techniques. A significant challenge in using deep learning methods is the ability to explain the decision-making process of the network. To ensure accurate results, the deep network being used must undergo extensive training to produce high-quality predictions. There are various network architectures that differ in their properties and number of parameters. Consequently, an intriguing question is how these different networks arrive at similar or distinct decisions based on the same set of prerequisites. Therefore, three widely used deep convolutional networks have been discussed, such as VGG16, ResNet50 and EfficientNetB7, which were used as backbone models. We have customized the output layer of these pre-trained models with a softmax layer. In addition, an additional network has been described that was used to assess the saliency areas obtained. For each of the above networks, many tests have been performed using key metrics, including statistical evaluation of the impact of class activation mapping (CAM) and gradient-weighted class activation mapping (Grad-CAM) on network performance on a publicly available dataset of brain tumour X-ray images.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3