Environmental Assessment of Soil and Groundwater Pollution by BTEX Leaching in Valencia Region (Spain)

Author:

Rodrigo-Ilarri Javier1ORCID,Rodrigo-Clavero María-Elena1ORCID,Capilla José E.1,Romero-Ballesteros Luis1

Affiliation:

1. Instituto de Ingeniería del Agua y del Medio Ambiente (IIAMA), Universitat Politècnica de València (UPV), Camino de Vera s/n, 46022 Valencia, Spain

Abstract

The impact of hydrocarbon spills in the unsaturated zone is a significant environmental concern, particularly in locations where contamination arises from leaks in underground fuel storage tanks (USTs). This paper presents the outcomes achieved through the utilization of VLEACH, a finite-difference numerical model, to assess the concentrations of organic contaminants in the solid, liquid, and gas phases within the vadose zone. Additionally, it evaluates the mass transfer of pollutants to the aquifer as part of an environmental assessment for the placement of a forthcoming service station. The study encompasses an analysis of 18 scenarios under realistic conditions based on actual field data. These scenarios were constructed, taking into account various factors, including the nature of the leak (one-time or permanent), the depth of the phreatic level, and the soil conditions and properties. The results highlight the potential environmental consequences of a permanent leak as compared to those resulting from a specific accident. The findings further emphasize the substantial influence of soil moisture on transport phenomena within the vadose zone. Variations in soil moisture significantly alter hydraulic conductivity, impact magnitudes, transport velocities, and even the predominant transport mechanism. Consequently, precise delineation of soil moisture becomes a crucial parameter in such simulations. Additionally, it has been observed that each component of BTEX (benzene, toluene, ethylbenzene, and xylene) experiences varying transport velocities through the vadose zone. Benzene, having a greater propensity to concentrate in the liquid and gas phases, exhibits the swiftest movement through the vadose zone. The detection of benzene in aquifers can serve as an indicator of the potential future arrival of the remaining BTEX compounds.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3