The Impact of Land—Use Composition and Landscape Pattern on Water Quality at Different Spatial Scales in the Dan River Basin, Qin Ling Mountains

Author:

Zhang Yuanyuan12,Zhao Yan13,Zhang Huiwen12,Cao Jing12,Chen Jingshu12,Su Cuicui4,Chen Yiping13

Affiliation:

1. State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710061, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. Shaanxi Key Laboratory of Qin ling Ecological Security, Shaanxi Academy of Sciences, Xi’an 710043, China

4. School of Environmental and Chemical Engineering, Xi’an Polytechnic University, Xi’an 710048, China

Abstract

To study the impact of land—use structure and landscape pattern on water quality at different spatial scales in the Dan River Basin (Qin Ling Mountains, China), water samples from 21 sites along the Dan River were collected in 2022 during the dry and wet seasons, and nine water quality indices were tested. Land—use composition and landscape pattern indices at riverine reach, riparian, and sub—basin were obtained, and correlation analysis and redundancy analysis (RDA) were used to determine the relationship with water quality. The results are as follows. (1) Water quality in the Dan River is better in the wet season than in the dry season; the main pollutants are total nitrogen (TN) and total phosphorus (TP). (2) The impact of land—use composition and landscape pattern on water quality has a scale effect; riverine reach can best explain the water quality. (3) Agricultural land and forest have the greatest impacts on water quality; agricultural land and construction land aggravate the deterioration of water quality, while forest, grassland, and water area have positive effects on water quality. The largest patch index (LPI) and contagion index (CONTAG) were positively correlated with pollutants, while Patch richness density (PRD), Patch shape (PD), Shannon’s diversity index (SHDI), and landscape shape index (LSI) were negatively correlated with pollutants, indicating that with an increase in the impact of human activities on landscapes, the degree of fragmentation decreases patch richness, landscape shape tends to be simplified, and water pollution is eventually aggravated. Land planners should focus on optimizing the land—use structure and landscape pattern to increase the diversity of the landscape. Therefore, strict environmental regulations must be established.

Funder

Natural Science Basic Research Plan in Shaanxi Province of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3