Hybrid Carrier Frequency Modulation Based on Rotor Position to Reduce Sideband Vibro-Acoustics in PMSM Used by Electric Vehicles

Author:

Qiu ZizhenORCID,Chen Yong,Lin Xiaozhe,Cheng Haiquan,Kang Yang,Liu Xu

Abstract

In the permanent magnet synchronous motor (PMSM) drive system, the unwilling and ear-piercing vibro-acoustics caused by high-frequency sideband harmonics becomes unacceptable in electric vehicle applications. In this paper, a modified space vector pulse width modulation (SVPWM) technique implemented with a hybrid carrier frequency modulation (HCFM) is provided to reduce the sideband current harmonic components and vibro-acoustic responses. The principle and implementation of the proposed HCFM technique are firstly presented in which the fixed carrier frequency is improved with the sawtooth and random signal-based coupling modulation based on the rotor position. The analytical derivations with the power spectral density method are also proposed. For verification, the experiment tests are conducted on a prototype 12/10 PMSM and microcontroller unit. The effectiveness of the HCFM technique can hence be confirmed considering the sideband vibro-acoustics reduction operated more effectively than that in a conventional random PWM. The proposed approach may provide a new route in noise-cancelling and electromagnetic compatibility for the electric drive powertrain.

Funder

Ningbo Science and Technology Project

China Scholarship Council

Publisher

MDPI AG

Subject

Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3