Torque-Enhanced Phase Current Detection Schemes for Multiphase Switched Reluctance Motors with Reduced Sensors

Author:

Shen ShiqiORCID,Wang Hui,Li Mengqiu,Feng Yaojing,Zhong Yichang

Abstract

An n/2-sensor-based and an (m + 1)/2-sensor-based phase current detection scheme are proposed for even-numbered switched reluctance motors (EMSRMs) with n phases and odd-numbered switched reluctance motors (OMSRMs) with m phases. For the EMSRMs, the phases are divided into n/2 groups each of which includes two phases furthest from each other, and the lower dc bus is split into n/2 + 1 buses such that the currents through the lower switches of a group flow through a bus whose current is detected by a sensor. For the OMSRMs, the phases are divided into (m + 1)/2 groups and the currents through the lower switches of a group are detected by a multiplexed sensor without converter modification; the phase grouping is generalized as an optimization problem considering the volume and measuring range of the sensors. The schemes can detect the magnetization and freewheeling phase currents under multiphase excitation without pulse injection and voltage penalty. Compared to the existing schemes using cross-winding sensors, the proposed schemes can increase the motor torque by extending the phase conduction region. In addition, the proposed scheme for EMSRMs can combine the low-cost low-side shunt current sensing technique, and the proposed scheme for OMSRMs can increase the current sensing resolution. Simulations are carried out to validate the two proposed schemes. The proposed (m + 1)/2-sensor-based scheme is further verified experimentally.

Funder

Hunan Provincial Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3