Analysis of Recent Mean Temperature Trends and Relationships with Teleconnection Patterns in California (U.S.)

Author:

González-Pérez Alejandro,Álvarez-Esteban RamónORCID,Penas Ángel,del Río SaraORCID

Abstract

The global mean surface temperature has risen since the late 19th century. However, temperatures do not increase uniformly in space or time and few studies have focused on that peculiarity in the State of California. The aim of this research is to deepen our knowledge of the evolution of mean temperatures in the State of California on monthly, seasonal and annual time scales. The period under study comprises 40 years (from 1980 to 2019) and data from 170 meteorological stations were analysed. Statistical techniques, including Sen’s slope and Mann-Kendall, were applied to each of the stations to establish the sign and slopes of trends and their statistical significance. The spatial distribution of monthly, seasonal and annual trends was analysed using the Empirical Bayesian Kriging (EBK) geostatistical technique. The trend analysis was also carried out for the State as a whole. This research also studies the relationships between mean temperatures and nine teleconnection patterns with influence on the Californian climate. To find out these links, a correlation analysis was performed using the partial non-parametric Spearman Test at a 95% confidence level. The study reveals a positive trend of +0.01 °C year−1 for the whole state and that Southern California is getting warmer than Northern California for the study period. On a seasonal scale, the local temperature increased significantly both in autumn and summer (+0.06 °C and +0.035 °C year−1 respectively) from 1980 to 2019. On a monthly scale, the largest increases are found in November at +0.04 °C year−1. Temperatures in February, March, April and May are highly correlated with most of the teleconnection patterns studied in the State of California. West Pacific Oscillation (WPO) teleconnection pattern has shown the highest negative correlation. However, The Pacific Decadal Oscillation (PDO) has a positive correlation with mean temperatures in coastal areas such as Los Angeles, San Francisco and Monterey. Moreover, Antarctic Oscillation (AAO) and Arctic Oscillation patterns (AO) are unlikely to show great influence on average temperature trends in California.

Funder

Consejería de Educación

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3