Climate Impact Reduction Potentials of Synthetic Kerosene and Green Hydrogen Powered Mid-Range Aircraft Concepts

Author:

Silberhorn Daniel,Dahlmann KatrinORCID,Görtz Alexander,Linke FlorianORCID,Zanger Jan,Rauch BastianORCID,Methling TorstenORCID,Janzer Corina,Hartmann Johannes

Abstract

One of aviation’s major challenges for the upcoming decades is the reduction in its climate impact. As synthetic kerosene and green hydrogen are two promising candidates, their potentials in decreasing the climate impact is investigated for the mid-range segment. Evolutionary advancements for 2040 are applied, first with an conventional and second with an advanced low-NOx and low-soot combustion chamber. Experts and methods from all relevant disciplines are involved, starting from combustion, turbofan engine, overall aircraft design, fleet level, and climate impact assessment, allowing a sophisticated and holistic evaluation. The main takeaway is that both energy carriers have the potential to strongly reduce the fleet level climate impact by more than 75% compared with the reference. Applying a flight-level constraint of 290 and a cruise Mach number of 0.75, causing 5% higher average Direct Operating Costs (DOC), the reduction is even more than 85%. The main levers to achieve this are the advanced combustion chamber, an efficient contrail avoidance strategy, in this case a pure flight-level constraint, and the use of CO2 neutral energy carrier, in a descending priority order. Although vehicle efficiency gains only lead to rather low impact reduction, they are very important to compensate the increased costs of synthetic fuels or green hydrogen.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference61 articles.

1. Cleaner burning aviation fuels can reduce contrail cloudiness

2. Perspectives on Fully Synthesized Sustainable Aviation Fuels: Direction and Opportunities

3. Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes;Goodwin,2009

4. Study of Prediction Methods for NOx Emission from Turbofan Engines

5. Aircraft Engine Emissions Data Bank,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3