Weighted Averaging Federated Learning Based on Example Forgetting Events in Label Imbalanced Non-IID

Author:

Hong MannsooORCID,Kang Seok-Kyu,Lee Jee-Hyong

Abstract

Federated learning, a data privacy-focused distributed learning method, trains a model by aggregating local knowledge from clients. Each client collects and utilizes its own local dataset to train a local model. Local models in the connected federated learning network are uploaded to the server. In the server, local models are aggregated into a global model. During the process, no local data is transmitted in or out of any client. This procedure may protect data privacy; however, federated learning has a worse case of example forgetting problem than centralized learning. The problem manifests in lower performance in testing. We propose federated weighted averaging (FedWAvg). FedWAvg identifies forgettable examples in each client and utilizes that information to rebalance local models via weighting. By weighting clients with more forgettable examples, such clients are better represented and global models can acquire more knowledge from normally neglected clients. FedWAvg diminishes the example forgetting problem and achieve better performance. Our experiments on SVHN and CIFAR-10 datasets demonstrate that our proposed method gets improved performance compared to existing federated learning algorithm in non-IID settings, and that our proposed method can palliate the example forgetting problem.

Funder

Korea government

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference26 articles.

1. Communication-Efficient Learning of Deep Networks from Decentralized Data;McMahan;Proceedings of the 20th International Conference on Artificial Intelligence and Statistics,2017

2. Advances and Open Problems in Federated Learning

3. Federated Learning: Strategies for Improving Communication Efficiency;Konečný;Proceedings of the NIPS Workshop on Private Multi-Party Machine Learning,2016

4. Federated Optimization: Distributed Optimization Beyond the Datacenter;Konečný;Proceedings of the 8th NIPS Workshop on Optimization for Machine Learning,2015

5. Federated Learning in Mobile Edge Networks: A Comprehensive Survey

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3