Switching Neural Network Control for Underactuated Spacecraft Formation Reconfiguration in Elliptic Orbits

Author:

Yu JinlongORCID,Li Zhi,Jia LuORCID,Zhang Yasheng

Abstract

A switching neural network control scheme, consisting of the adaptive neural network controller and sliding mode controller, is proposed for underactuated formation reconfiguration in elliptic orbits with the loss of either the radial or in-track thrust. By using the inherent coupling of system states, the switching neural network technique is then adopted to estimate the unmatched disturbances and design the underactuated controller to achieve underactuated formation reconfiguration with high precision. The adaptive neural network controller works in the active region, and the disturbances composed of linearization errors and external perturbations are approximated by radial basis function neural networks. The adaptive sliding mode controller works outside the active region, and the upper bound of the approximation errors is estimated by the adaptation law. The stability of the closed-loop control system is proved via the Lyapunov-based approach. The numerical simulation results have demonstrated the rapid, high-precision and robust performance of the proposed controller compared with the linear sliding mode controller.

Funder

Young Scientists Fund of the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3