A Machine Learning and Radiomics Approach in Lung Cancer for Predicting Histological Subtype

Author:

Brunetti AntonioORCID,Altini NicolaORCID,Buongiorno DomenicoORCID,Garolla Emilio,Corallo Fabio,Gravina MatteoORCID,Bevilacqua VitoantonioORCID,Prencipe BerardinoORCID

Abstract

Lung cancer is one of the deadliest diseases worldwide. Computed Tomography (CT) images are a powerful tool for investigating the structure and texture of lung nodules. For a long time, trained radiologists have performed the grading and staging of cancer severity by relying on radiographic images. Recently, radiomics has been changing the traditional workflow for lung cancer staging by providing the technical and methodological means to analytically quantify lesions so that more accurate predictions could be performed while reducing the time required from each specialist to perform such tasks. In this work, we implemented a pipeline for identifying a radiomic signature composed of a reduced number of features to discriminate between adenocarcinomas and other cancer types. In addition, we also investigated the reproducibility of this radiomic study analysing the performances of the classification models on external validation data. In detail, we first considered two publicly available datasets, namely D1 and D2, composed of n = 262 and n = 89 samples, respectively. Ten significant features, according to univariate AUC evaluated on D1, were retained. Mann–Whitney U tests recognised three of these features to have a statistically different distribution, with a p-value < 0.05. Then, we collected n = 51 CT images from patients with lung nodules at the Azienda Ospedaliero—Universitaria “Policlinico Riuniti” in Foggia. Resident radiologists manually annotated the lung lesions in images to allow the subsequent analysis of the malignancy regions. We designed a pipeline for feature extraction from the Volumes of Interest in order to generate a third dataset, i.e., D3. Several experiments have been performed showing that the selected radiomic signature not only allowed the discrimination of lung adenocarcinoma from other cancer types independently from the input dataset used for training the models, but also allowed reaching good classification performances also on external validation data; in fact, the radiomic signature computed on D1 and evaluated on the local cohort allowed reaching an AUC of 0.70 (p<0.001) for the task of predicting the histological subtype.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3