Learning Robust Shape-Indexed Features for Facial Landmark Detection

Author:

Wan Xintong,Wu Yifan,Li XiaoqiangORCID

Abstract

In facial landmark detection, extracting shape-indexed features is widely applied in existing methods to impose shape constraint over landmarks. Commonly, these methods crop shape-indexed patches surrounding landmarks of a given initial shape. All landmarks are then detected jointly based on these patches, with shape constraint naturally embedded in the regressor. However, there are still two remaining challenges that cause the degradation of these methods. First, the initial shape may seriously deviate from the ground truth when presented with a large pose, resulting in considerable noise in the shape-indexed features. Second, extracting local patch features is vulnerable to occlusions due to missing facial context information under severe occlusion. To address the issues above, this paper proposes a facial landmark detection algorithm named Sparse-To-Dense Network (STDN). First, STDN employs a lightweight network to detect sparse facial landmarks and forms a reinitialized shape, which can efficiently improve the quality of cropped patches when presented with large poses. Then, a group-relational module is used to exploit the inherent geometric relations of the face, which further enhances the shape constraint against occlusion. Our method achieves 4.64% mean error with 1.97% failure rate on COFW68 dataset, 3.48% mean error with 0.43% failure rate on 300 W dataset and 7.12% mean error with 11.61% failure rate on Masked 300 W dataset. The results demonstrate that STDN achieves outstanding performance in comparison to state-of-the-art methods, especially on occlusion datasets.

Funder

Science and Technology Commission of Shanghai Municipality

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Shrinkage Method for Learning, Registering and Clustering Shapes of Curves;Proceedings of the 12th International Symposium on Information and Communication Technology;2023-12-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3