Wavelet Time-Frequency Analysis on Bridge Resonance in Train-Track-Bridge Interactive System

Author:

Wu ZhaozhiORCID,Zhang Nan,Yao Jinbao,Poliakov Vladimir

Abstract

With the continuous improvement in the operation speed of trains, the impact of train–induced vibration through the track on the bridge is increasingly prominent. In particular, when the loading frequency is the same as or close to the natural frequency of the bridge, the resonant response of the bridge will be activated, which will probably endanger the safety of the operation and the bridge structure. Normally, the traditional method to indicate the appearance of resonant response is to analyze the frequency spectrum of the response through the Fourier transform from its time history. However, it can simply reflect the contribution of different frequency components within a stationary window. Therefore, continuous wavelet transform is adopted on a 2D train–track–bridge interactive system in this article. It illustrates the evolutionary characteristics of different frequencies from the input excitation to the output response during the bridge resonance in the time–frequency domain, compared with the cases when the bridge is nonresonant. Finally, the article demonstrates the feasibility of the method. It concludes that the resonance and quasi–resonance–triggering band accounts for the highly intensified bridge response, while the staggering domination between the steady-state and the transient response is the main phenomenon for the nonresonant bridge. Additionally, within the low–frequency band, the resonant bridge will have a more significant impact on the track subsystem than the train subsystem.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3