Multimodal Classification of Safety-Report Observations

Author:

Paraskevopoulos GeorgiosORCID,Pistofidis PetrosORCID,Banoutsos Georgios,Georgiou EfthymiosORCID,Katsouros VassilisORCID

Abstract

Modern businesses are obligated to conform to regulations to prevent physical injuries and ill health for anyone present on a site under their responsibility, such as customers, employees and visitors. Safety officers (SOs) are engineers, who perform site audits to businesses, record observations regarding possible safety issues and make appropriate recommendations. In this work, we develop a multimodal machine-learning architecture for the analysis and categorization of safety observations, given textual descriptions and images taken from the location sites. For this, we utilize a new multimodal dataset, Safety4All, which contains 5344 safety-related observations created by 86 SOs in 486 sites. An observation consists of a short issue description, written by the SOs, accompanied with images where the issue is shown, relevant metadata and a priority score. Our proposed architecture is based on the joint fine tuning of large pretrained language and image neural network models. Specifically, we propose the use of a joint task and contrastive loss, which aligns the text and vision representations in a joint multimodal space. The contrastive loss ensures that inter-modality representation distances are maintained, so that vision and language representations for similar samples are close in the shared multimodal space. We evaluate the proposed model on three tasks, namely, priority classification of input observations, observation assessment and observation categorization. Our experiments show that inspection scene images and textual descriptions provide complementary information, signifying the importance of both modalities. Furthermore, the use of the joint contrastive loss produces strong multimodal representations and outperforms a baseline simple model in tasks fusion. In addition, we train and release a large transformer-based language model for the Greek language based on the Electra architecture.

Funder

European Regional Development Fund

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3