Abstract
With the rapid development of the World Wide Web and information retrieval technology, learning supported by searching engines (such as making travel plans) has boomed over the past years. With the help of search engines, learners can easily retrieve and find large amounts of information on the web. Recent research in the searching as learning (SAL) area has associated web searching with learning. In SAL processes, web learners recursively plan tasks, formulate search queries, obtain information from web pages, and change knowledge structures, to gradually complete their learning goals. To improve the experiences of web learners, it is important to accurately present and extract tasks. Using learning styles and similarity metrics, we first proposed an IBRT model to implement structured representations of the SAL process for each learner. SAL tasks were then extracted from the structures of IBRT. In this study, a series of experiments were carried out against assignment datasets from the Northeastern University (China) UWP Programming Course. Comparison results show that the proposed method can significantly improve the performance of SAL task extraction.
Funder
Key Project of National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献