Extrinsic Behavior Prediction of Pedestrians via Maximum Entropy Markov Model and Graph-Based Features Mining

Author:

Ghadi Yazeed YasinORCID,Akhter IsrarORCID,Aljuaid HananORCID,Gochoo MunkhjargalORCID,Alsuhibany Suliman A.ORCID,Jalal Ahmad,Park JeongminORCID

Abstract

With the change of technology and innovation of the current era, retrieving data and data processing becomes a more challenging task for researchers. In particular, several types of sensors and cameras are used to collect multimedia data from various resources and domains, which have been used in different domains and platforms to analyze things such as educational and communicational setups, emergency services, and surveillance systems. In this paper, we propose a robust method to predict human behavior from indoor and outdoor crowd environments. While taking the crowd-based data as input, some preprocessing steps for noise reduction are performed. Then, human silhouettes are extracted that eventually help in the identification of human beings. After that, crowd analysis and crowd clustering are applied for more accurate and clear predictions. This step is followed by features extraction in which the deep flow, force interaction matrix and force flow features are extracted. Moreover, we applied the graph mining technique for data optimization, while the maximum entropy Markov model is applied for classification and predictions. The evaluation of the proposed system showed 87% of mean accuracy and 13% of error rate for the avenue dataset, while 89.50% of mean accuracy rate and 10.50% of error rate for the University of Minnesota (UMN) dataset. In addition, it showed a 90.50 mean accuracy rate and 9.50% of error rate for the A Day on Campus (ADOC) dataset. Therefore, these results showed a better accuracy rate and low error rate compared to state-of-the-art methods.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3