Abstract
Bot accounts are automated software programs that act as legitimate human profiles on social networks. Identifying these kinds of accounts is a challenging problem due to the high variety and heterogeneity that bot accounts exhibit. In this work, we use genetic algorithms and genetic programming to discover interpretable classification models for Twitter bot detection with competitive qualitative performance, high scalability, and good generalization capabilities. Specifically, we use a genetic programming method with a set of primitives that involves simple mathematical operators. This enables us to discover a human-readable detection algorithm that exhibits a detection accuracy close to the top state-of-the-art methods on the TwiBot-20 dataset while providing predictions that can be interpreted, and whose uncertainty can be easily measured. To the best of our knowledge, this work is the first attempt at adopting evolutionary computation techniques for detecting bot profiles on social media platforms.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献