Residual Strength Analysis of C/SiC Ceramic Matrix Composite Panels Subjected to Combined Thermal-Acoustic Loadings

Author:

Zhang Yuli,Sun Yi,Liu YizhiORCID

Abstract

A study was undertaken to develop a methodology for assessing the residual strength of C/SiC ceramic matrix composite panels subjected to combined thermal-acoustic loadings. A 2D plain-woven C/SiC ceramic matrix composite panel subjected to spatially uniform thermal loading and band-limited Gaussian white noise is chosen as the computational test article, with its geometric nonlinear response determined via numerical simulation. As the input, the material properties (static strength, residual strength, and fatigue life) of this material are fully characterized under tensile and compression loads, for fiber direction at elevated temperature in static and fatigue loading conditions. Based on the methodology, a computer code is developed that simulates the cycle-by-cycle behavior of composite panels under fatigue loadings. The methodology is validated with the residual strength test of 2D plain-woven C/SiC composite panel subjected to combined thermal-acoustic loadings. It has been shown that the results of residual strength predicted by the methodology are well correlated with the experimental results.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3