Abstract
There has been considerable research in recent years on the additive manufacturing (AM) of carbon fiber reinforced polymer (CFRP) parts based on the process of fused deposition modeling (FDM). The currently-applied steps within the manufacturing pipeline, such as slicing and path planning, consider only the planar case of filament deposition and mostly make no use of the possibility to place single pre-impregnated (prepreg) filaments. Classical methods such as tape-laying and laminating struggle with highly curved and complex geometries and require the costly production of molds, whereas when using AM, these geometries can be realized more easily and molds can be created using the same process. In this paper, a set of algorithms is presented that aims to resolve these problems. Criteria are formulated which enable the goal oriented development and evaluation of the presented methods and represent metrics for future methods. The developed algorithms enable the use of both continuous and discontinuous fiber patches in a much wider range of applications in designing and manufacturing of CFRPs. This opens up new possibilities in this promising field. The developed metrics and infrastructure further constitute progress in the field of multi-axis non-planar path planning for slicing algorithms in general and the conducted evaluation proves the formal applicability of the developed algorithms.
Funder
Hamburg University of Techology I3 Program
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献