Predicting Algorithm of Tissue Cell Ratio Based on Deep Learning Using Single-Cell RNA Sequencing

Author:

Liu Zhendong,Lv Xinrong,Chen Xi,Li DongyanORCID,Qin Mengying,Bai Ke,Yang Yurong,Li Xiaofeng,Zhang Peng

Abstract

Background: Understanding the proportion of cell types in heterogeneous tissue samples is important in bioinformatics. It is a challenge to infer the proportion of tissues using bulk RNA sequencing data in bioinformatics because most traditional algorithms for predicting tissue cell ratios heavily rely on standardized specific cell-type gene expression profiles, and do not consider tissue heterogeneity. The prediction accuracy of algorithms is limited, and robustness is lacking. This means that new approaches are needed urgently. Methods: In this study, we introduced an algorithm that automatically predicts tissue cell ratios named Autoptcr. The algorithm uses the data simulated by single-cell RNA sequencing (ScRNA-Seq) for model training, using convolutional neural networks (CNNs) to extract intrinsic relationships between genes and predict the cell proportions of tissues. Results: We trained the algorithm using simulated bulk samples and made predictions using real bulk PBMC data. Comparing Autoptcr with existing advanced algorithms, the Pearson correlation coefficient between the actual value of Autoptcr and the predicted value was the highest, reaching 0.903. Tested on a bulk sample, the correlation coefficient of Lin was 41% higher than that of CSx. The algorithm can infer tissue cell proportions directly from tissue gene expression data. Conclusions: The Autoptcr algorithm uses simulated ScRNA-Seq data for training to solve the problem of specific cell-type gene expression profiles. It also has high prediction accuracy and strong noise resistance for the tissue cell ratio. This work is expected to provide new research ideas for the prediction of tissue cell proportions.

Funder

National Natural Science Foundation of China

Science and Research Plan of Luoyang Branch of Henan Tobacco Company

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Predicting Algorithm of Transcription Factor Binding Sites Based on Weighted Multi-Grained Scanning;2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM);2022-12-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3